INSTRUCTOR'S NAME: (FRE1A) E. Robert and (FR01A) W. Tomilson

DEPARTMENT OF MATHEMATICS & STATISTICS MATH 0863 - Precalculus

FINAL EXAMINATION

DECEMBER 2009

TIME: 3 HOURS

MARKS

Place all solutions on these sheets NO CALCULATORS ALLOWED

This is the quadratic formula as seen in class : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

1. Solve the following equations:

[4] (a)
$$3(x-2) = 2(x+5) + 4$$

[4] (b)
$$2x^2 + 18x + 20 = -20$$

[4] (c)
$$\frac{18}{x} = x - 3$$

[3] (d)
$$\log_3(x-4) + \log_3(x+4) = 2$$

[3] (e)
$$(8)^{2x+1} = 16$$

[3]
$$(f) e^{x+2} = 8$$

- [2] 2. (a) Find an equation for the line passing through (4, -5) and which is perpendicular to 2x y = 3.
- [2] (b) Sketch the graph of: (label intercepts) 3x + y = 7.

3. Evaluate giving exact answers:

[2] (a)
$$\frac{1}{(2)^{-1}} + 2(4)^2 =$$

[2] (b)
$$8^{\frac{2}{3}} =$$

[2] (c)
$$\log_3 81 =$$

[2]
$$(d) \log(2) + \log(5) =$$

[2] (e)
$$\sin \frac{2\pi}{3} =$$

[2]
$$(f) \tan(-150^\circ) =$$

[2] (g)
$$480^{\circ} = ____radians$$

[2] (h)
$$\frac{3\pi}{2}$$
 radians = _____degrees

- 4. For the function $f(x) = x^2 4x 12$ determine:
- [3] (a) the vertex
- [2] (b) the domain and range of f(x)
- [3] (c) the x and y intercepts
- [4] (d) graph the function
- [2] (e) solutions of $x^2 4x 12 < 0$ (find the interval where f(x) < 0)

5. Sketch the following functions clearly labelling all important features (a)
$$y = \frac{(x-1)}{(x+2)}$$

[5] (a)
$$y = \frac{(x-1)}{(x+2)}$$

[5] (b)
$$y = (x-3)^2(x+1)(x^2-5x+4)$$

[2] 6. (a) Sketch the following function clearly labelling all important features:
$$y = 2 \sin x + 1$$

[1] (b) If
$$0 < x < 2\pi$$
, for what values of x is $f(x)$ increasing?

	7.	An archer standing on the roof of a building shot an arrow into the air. If the height (h) of the arrow in meters above the ground after (t) seconds can be described by the equation: $h=-5t^2+20t+25$, find
[2]		(a) the height from which the arrow was shot
[2]		(b) the time the arrow reaches its maximal height.
[2]		(c) the maximal height reached by the arrow.
[2]		(d) the time it took the arrow to reach the ground.
[2]		(e) Sketch a graph to represent the arrow.

8. (a) If $\sin \alpha = \frac{3}{5}$, find

- [1] (i) how many different possible values can cos α take?
- [2] (ii) possible cos α values are:_____
- [1] (iii) if α is in the second quadrant (QII), then $\cos \alpha =$ ______
 - (b) Solve the following: $(0 \le \theta \le 360^{\circ})$
- [2] $(i) 2\sin\theta = 1$

[2] (ii) $\cos^2 \theta - 1 = 0$