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MARKS

1. Use the definition of the definite integral as the limit of a Riemann sum to compute(4) ∫
3

−1

4xdx. Do not use the Fundamental Theorem of calculus.

2. Evaluate each integral:

(a)

∫
tan x dx(3)

(b)

∫ π

3

0

sinx

1 + cos x
dx(3)

(c)

∫
x2

x + 3
dx(3)

(d)

∫
xe−xdx(4)

(e)

∫
sec4 tdt(4)

(f)

∫
3x2 + 5x − 4

(x − 1)(x + 1)2
dx(5)

(g)

∫
1

(16 − x2)
3

2

dx(4)

3. Determine if the improper integrals converge or diverge. If it converges, determine its
value.

(a)

∫
2

0

1

(x − 1)2
dx(4)

(b)

∫
∞

0

xe−x
2

dx(4)

4. Find the total area between y = sin x and the x-axis from x = 0 to x = 3π

2
(4)

5. Set up, but do not evaluate, an integral for the arc-length of the curve y = ln x(4)
from x = 0 to x = 1.



6. Consider the region bounded by the parabola y = 4x−x2 and the line y = x. Set up,
but do not evaluate, an integral for

(a) the volume of the solid generated by rotating the region around the x-axis. DO(4)
NOT EVALUATE.

(b) the volume of the solid generated by rotating the region around the line y = −1.(4)
DO NOT EVALUATE.

(c) the volume of the solid generated by rotating the region around the line x = 3.(4)
DO NOT EVALUATE.

7. Consider the integral

∫
2

−1

(1 − x2)dx. Use either the trapezoid rule OR Simpson’s rule(4)

with N = 6 to approximate this integral. DO NOT EVALUATE.

8. (a) Find the Taylor polynomial of degree 2 for f(x) =
√

1 + x expanded about(4)
x = 0.

(b) Use part (a) to approximate
√

1.1(3)

9. Find the solution of each differential equation:

(a)
dy

dx
= 3x2(y2 + 1) ; y(0) = 0(4)

(b)
dy

dx
+ y = 2e−x(4)

(c) y′′ − 2y = 0 ; y(0) = 0 , y′(0) = 1(4)

(d) 2y′′ − y′ + y = 0(4)

10. DO 3 OF THE 5 following problems. Indicate which problem you DO NOT want
marked. Each is worth 5 marks. You may use the remaining pages in this paper.

(a) The base of a solid is a semicircle of radius 1. Cross-sections by planes perpen-(5)
dicular to the diameter of the semicircle are squares. Find the volume of the
solid.

(b) A tank contains 1000 litres of brine, consisting of 10 kg salt and water. Pure(5)
water enters the tank at a rate of 5 ℓ/min. The well mixed solution drains from
the tank, also at 5 ℓ/min.. At what time does the tank contain exactly 5 kg of
salt?

(c) A spring connected to mass of 1 kg requires 2N of force to compress it 0.2 m(5)
from its natural length. The coefficient of friction is c = 2 kg/sec. Find the
position of the mass at time t if the initial displacement is 0 and it is given an
initial velocity of 0.1 m/sec in the stretched direction.

(d) A tank is in the shape of cylinder of radius 3 m and height 10 m. It is filled(5)
only to the 9 m level. Find the work required to empty the tank by pumping all
of the water through the top of the tank. The density of water is 1000 kg/m3.
Do not assign a value to the gravitational constant g.

(e) Integrate

∫ π

2

−
π

2

ex cos x dx(5)

2


