DEPARTMENT OF MATHEMATICS & STATISTICS MATH 3503

FINAL EXAMINATION

December, 2006 Time: 3 HOURS

NO CALCULATORS

 $\frac{\text{MARKS}}{(7)}$ 1. (a) Use undetermined coefficients to find the general solution to the differential equa-

$$y'' + 2y' + 5y = 2\sin x.$$

(7)(b) Use variation of parameters to solve

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 2e^{-3x}.$$

2. Find the Laplace transform of the following functions:

(a) $f(t) = t^{3/2}e^{-2t}$ (answer should contain $\sqrt{\pi}$) (3)

(4) (b)
$$f(t) = \begin{cases} t^2, & \text{if } 0 < t < 2\\ 0, & \text{if } t > 2 \end{cases}$$

(3) 3. (a) Find
$$\mathcal{L}^{-1} \left\{ \frac{s}{(s^2+3)^2} e^{-2s} \right\}$$
.

(4)(b) Use the convolution theorem to find

$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+2s+2)(s^2+4)}\right\}.$$

Do not evaluate the convolution integral.

(7)4. Use the Laplace transform to solve the initial value problems.

$$y'' + 4y' + 13y = \delta(t - 3), \quad y(0) = 1, \quad y'(0) = 0.$$

5. Solve (7)

$$\frac{d^2x}{dt^2} + \omega^2 x = f(t), \quad x(0) = x_0, \quad x'(0) = x_1,$$

where ω , x_0 , x_1 are constants and f(t) is an arbitrary function. Part of your solution should be expressed as a convolution integral.

(7) 6. Find the general solution to the system in terms of real functions

$$\frac{dx}{dt} = 3x - 2y$$

$$\frac{dy}{dt} = 5x + y$$

(7) 7. Find the general solution to the system of differential equations

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$
, where $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$,

given that the characteristic equation for the coefficient matrix A is

$$-(\lambda+1)(\lambda^2-7\lambda-8)=0.$$

(7) 8. Find the Fourier cosine series for the function

$$f(x) = x, \quad 0 < x < 1.$$

Sketch the graph of the function to which the series converges for $-3 \le x \le 3$.

(7) 9. Find Fourier series for

$$f(t) = \begin{cases} 0, & \text{if } -2 < t < 0 \\ 1, & \text{if } 0 < t < 2 \end{cases}$$

Sketch the graph of the function to which the series converges for $-6 \le t \le 6$.

(70)