restart;

Numeric solutions of ODEs in Maple

The purpose of this worksheet is to introduce Maple's `dsolve/numeric` command. There are many examples of differential equations that Maple cannot solve analytically, it these cases a default call to `dsolve` returns a null (blank) result:

```maple
> ode := diff(y(x),x,x) + y(x)^2 = x^2;
  dsolve(ode);
ode := \frac{d^2}{dx^2} y(x) + y(x)^2 = x^2
```

(1)

If this happens, one can obtain a solution numerically by specifying initial conditions and providing the option "numeric":

```maple
> ICs := y(0) = 0, D(y)(0)= 1/2;
sol := dsolve({ode,ICs},numeric);
ICs := y(0) = 0, D(y)(0) = \frac{1}{2}
sol := proc(x_rkf45) ... end proc
```

(2)

The output of `dsolve` is by default a Maple procedure of a single argument. If we call this procedure with argument `x`, we obtain information about the solution at that value of the independent variable:

```maple
> sol(1);
\begin{align*}
  x &= 1., y(x) = 0.560986197489666, \quad \frac{dy(x)}{dx} = 0.739332218315567
\end{align*}
```

(3)

That is, we get a list giving us a numeric approximation to the value of the unknown and its first derivative at our choice of `x`. If the equation we wanted to solve was higher order (say \(n\)th order), we would have more elements in the list corresponding to all the derivatives of `y` up to \((n - 1)\)th order. The default behaviour of `dsolve/numeric` is to return a procedure which itself returns a list; however, we can instead have it return a list of procedures but using the optional command "output = listprocedure".

```maple
> sol := dsolve({ode,ICs},numeric,output=listprocedure);
sol := \begin{align*}
  x &= \text{proc}(x) ... \text{end proc},
  y(x) &= \text{proc}(x) ... \text{end proc},
  \frac{dy(x)}{dx} &= \text{proc}(x)
\end{align*}
```

(4)

Here, we get a list of three equations. The RHS of each equation is a procedure that calculates what is represented on the LHS. For example, the RHS of the second element is a procedure that calculates `y(x)`. We can isolate this particular procedure as follows:

```maple
> y_sol := sol[2];
y_sol := rhs(y_sol);
\begin{align*}
y_{sol} &= y(x) = \text{proc}(x) ... \text{end proc} \\
y_{sol} &= \text{proc}(x) ... \text{end proc}
\end{align*}
```

(5)

Now, `y_sol` is a procedure that just returns the numeric solution for `y` as a function of `x`:

```maple
> y_sol(2);
1.79279104009982
```

(6)

This procedure can readily be used to obtain a plot of the numeric solution of the ODE:
This is not the only way to obtain a plot of the numeric solution of an ODE, look at `plots/odeplot` for an alternate method (I recommend the one given here, however). The `dsolve/numeric` command can also be used to solve systems of ODEs such as the following [this is a predator-prey model from mathematical biology where $X(T)$ and $Y(T)$ represent the populations of humans and fish, respectively]:

```plaintext
> ODE1 := diff(X(T), T) = -X(T)*(-1+Y(T));
ODE2 := diff(Y(T), T) = Y(T)*(-1+X(T))*alpha;
```

Here is the code to generate procedures `X_sol` and `Y_sol` giving the numeric solution for the two unknowns for a particular choice of initial data and α:

```plaintext
> alpha := 1;
X0 := 2;
Y0 := 1;
ans := dsolve([ODE1,ODE2,X(0)=X0,Y(0)=Y0],numeric,output=listprocedure);
```
\[X_{sol} := \text{rhs}(\text{ans}[2]); \]
\[Y_{sol} := \text{rhs}(\text{ans}[3]); \]
\[\alpha := 1 \]
\[X0 := 2 \]
\[Y0 := 1 \]
\[\text{ans} := [T = \text{proc}(T) \ldots \text{end proc}, X(T) = \text{proc}(T) \ldots \text{end proc}, Y(T) = \text{proc}(T) \ldots \text{end proc}] \]
\[X_{sol} := \text{proc}(T) \ldots \text{end proc} \]
\[Y_{sol} := \text{proc}(T) \ldots \text{end proc} \]
The above numeric solution was for a particular choice of initial data. Let's generate a series of ten solution curves for a number of choices of initial data (N.B. now we choose $\alpha = 10$):

```plaintext
code
> alpha := 10;
for i from 1 to 10 do:
    X0 := 1+i/10;
    Y0 := 1;
    ans := dsolve([ODE1, ODE2, X(0)=X0, Y(0)=Y0], numeric, output=listprocedure);
    X_sol[i] := rhs(ans[2]);
    Y_sol[i] := rhs(ans[3]);
    print(i);
od:
```

$x = 1$ 2 3 4 5 6 7
Here is a plot of the X solutions as a function of T:

```maple
plot([seq(X_sol[i](T), i=1..10)], T=0..10);
```

Here is a plot of the phase portrait of each of the solutions:

```maple
plot([seq([X_sol[i](T), Y_sol[i](T), T=0..10], i=1..10))];
```